

Evaluation of CERT Secure Coding Rules
through Integration with Source Code
Analysis Tools

Stephen Dewhurst
Chad Dougherty
Yurie Ito
David Keaton
Dan Saks
Robert C. Seacord
David Svoboda
Chris Taschner
Kazuya Togashi

June 2008

TECHNICAL REPORT
CMU/SEI-2008-TR-014
ESC-TR-2008-014

CERT Program
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2008 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xi

1 Overview 1
1.1 Secure Coding Standards 1
1.2 The Study 2

2 Evaluation and Rule Development 3
2.1 Fortify SCA 3
2.2 Compass / ROSE 6

3 Project Analysis 9
3.1 Measuring and Analysis 9

4 Results 13
4.1 Fortify Results 13

4.1.1 CERT C++ Secure Coding Standard 14
4.1.2 CERT C Secure Coding Standard 15

4.2 Rose Results 16
4.2.1 External Header Rose Analysis 18

5 Summary 21

Appendix A Fortify C Rules 23

Appendix B Fortify C++ Rules 35

Appendix C C Rules Implemented in Compass Rose 43

Appendix D ROSE C++ Rules 51

References/Bibliography 53

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2008-TR-014

List of Figures

Figure 1. Software verification and validation project. 2

Figure 2. Simple header diagnosis program. 18

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2008-TR-014

List of Tables

Table 1. Summary of Rules Implemented for Fortify SCA. 5

Table 2: Project selection. 9

Table 3. Summary of rules analyzed. 13

Table 4. Total Reports. 13

Table 5. CERT rules checked with Fortify SCA. 14

Table 6. Analysis of Fortify CERT C++ secure coding rules. 14

Table 7. Risk analysis for DAN34-C. 15

Table 8. Analysis of Fortify CERT C secure coding rules. 15

Table 9. ROSE total reports. 16

Table 10. CERT rules checked with ROSE. 16

Table 11. CERT rules checked with ROSE. 17

Table 12. Risk analysis for ARR00-A. 17

Table 13. Rules reported by both Fortify and ROSE. 18

Table 14. CERT C++ rules checked with ROSE in standard header file. 19

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2008-TR-014

Acknowledgments

Thanks to our sponsor, JPCERT/CC and to the JPCERT/CC employees who assisted in this study:
Takayoshi Shiigi and Masaki Kubo. Thanks to the staff members at Software Research Associ-
ates (SRA) who volunteered their time to participate in this study. Thanks to our collaboration
partners at Fortify Software and Fortify Software Japan, including Brian Chess, Jacob West,
Geoff Morrison, Erik Klein, John Forsythe, Kannan Goundan, Ning Wang, and Gensei Endo.
Thanks to Daniel Quinlan at Lawrence Livermore National Laboratory for all his help getting us
up and running with Compass/ROSE. Thanks to our SEI editor Pamela Curtis, and to Bob Rosen-
stein, Jason Rafail, and Jeff Carpenter for making this work possible.

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2008-TR-014

Executive Summary

This report describes the results of a study to evaluate the effectiveness of secure coding practices,
including the use of static analysis tools coupled with secure coding rule sets such as the CERT C
Programming Language Secure Coding Standard [CERT 07a] and the CERT C++ Programming
Language Secure Coding Standard [CERT 07b].

This study represents a joint effort between the CERT Secure Coding Initiative and JPCERT/CC.

The CERT Secure Coding Initiative was established to work with software developers and soft-
ware development organizations to eliminate vulnerabilities resulting from coding errors before
they are deployed. The goal of this effort is to reduce the number of vulnerabilities to a level
where they can be handled by existing vulnerability analysis teams around the world and decrease
remediation costs by eliminating vulnerabilities before software is deployed.

JPCERT/CC is the first CSIRT (computer security incident response team) established in Japan.
The organization coordinates with network service providers, security vendors, government agen-
cies, and industry associations. By so doing, it acts as a “CSIRT of the CSIRTs” for Japan. In the
Asia Pacific region, JPCERT/CC helped form the Asia Pacific Computer Emergency Response
Team (APCERT) and provides a secretariat function for APCERT. Globally, as a member of the
Forum of Incident Response and Security Teams (FIRST), JPCERT/CC coordinates its activities
with the trusted CSIRTs worldwide.

The objectives of the study were to evaluate the efficacy of the CERT Secure Coding Standards
and source code analysis tools in improving the quality and security of commercial software pro-
jects. Two static analysis tools, Fortify Source Code Analysis (SCA) from Fortify Software and
Compass/ROSE from Lawrence Livermore National Laboratory were selected for their extensibil-
ity as well as overall effectiveness. Checkers were then developed for each of these tools to check
code for violations of the CERT C and C++ Secure Coding Standards. These tools were then pro-
vided to Software Research Associates, Inc. (SRA), a well-established Japanese software devel-
opment firm. SRA evaluated the extended versions of Fortify SCA and Compass/ROSE on two
existing projects: a toll collection system-related GUI application written in C++ and an Video
Service Communication Protocol written in the C programming language.

The project successfully extended source code analysis tools to discover a number of software
defects in both projects evaluated, demonstrating the effectiveness of both the CERT Secure Cod-
ing Standards and the static analysis tools evaluated in improving software quality. The project
was also successful in identifying ways in which both the CERT Secure Coding Standards and the
static analysis tools could be further improved.

 SOFTWARE ENGINEERING INSTITUTE | ix

http://www.first.org/

x | CMU/SEI-2008-TR-014

 SOFTWARE ENGINEERING INSTITUTE | xi

Abstract

This report describes a study conducted by the CERT Secure Coding Initiative and JPCERT to
evaluate the efficacy of the CERT Secure Coding Standards and source code analysis tools in im-
proving the quality and security of commercial software projects. In addition to assessing the abil-
ity of existing tools to detect violations of the standard, the ability to extend and improve the tools
is surveyed. Finally, the use of a selected tool to improve the quality of code in the real-world
case of a Japanese software vendor’s product is described.

1 Overview

This report describes the results of a study to determine the effectiveness of the secure coding
rules and recommendations from the CERT C Programming Language Secure Coding Standard
[CERT 07a] and the CERT C++ Programming Language Secure Coding Standard [CERT 07b].

1.1 SECURE CODING STANDARDS

Society’s increased dependency on networked software systems has been matched by an increase
in the number of attacks aimed at these systems. These attacks—directed at governments, corpo-
rations, educational institutions, and individuals—have resulted in the loss and compromise of
sensitive data, system damage, lost productivity, and financial loss [Seacord 05].

Software vulnerability reports continue to grow at an alarming rate [CERT 07c] and a significant
number of them result in technical alerts [US-CERT 08]. To address this growing threat, the in-
troduction of software vulnerabilities during software development and ongoing maintenance
must be significantly curtailed.

An essential element of secure software development is well-documented and enforceable coding stan-
dards. Coding standards encourage programmers to follow a uniform set of rules and guidelines deter-
mined by the requirements of the project and organization, rather than by the programmer’s familiarity
or preference. Once established, these standards can be used as a metric to evaluate source code (using
manual or automated processes) to determine compliance with the standard.

The secure coding standards proposed by CERT are based on documented standard language ver-
sions as defined by official or de facto standards organizations. For example, secure coding stan-
dards are planned for the following languages:

• C programming language (ISO/IEC 9899:1999) [ISO/IEC 9899-1999]

• C++ programming language (ISO/IEC 14882:2003) [ISO/IEC 14882-2003]

Applicable technical corrigenda and documented language extensions such as the ISO/IEC TR
24731 extensions to the C library [ISO/IEC TR 24731-1-2007] will also be considered.

The scope allows specific guidance to be provided to broad classes of users. Programming lan-
guage standards, like those created by ISO/IEC, are primarily intended for compiler implemen-
ters. Secure coding standards are ancillary documents that provide rules and guidance directly to
developers who program in languages defined by these standards.

The goal of each coding standard is to define a set of rules that is necessary (but not sufficient) to
ensure the security of software systems developed in the respective programming languages.

 SOFTWARE ENGINEERING INSTITUTE | 1

The CERT secure coding standard consists of rules and recommendations. Coding practices are
defined to be rules when all of the following conditions are met:

1. Violation of the coding practice will result in a security flaw that may result in an exploitable vulnerability.

2. There is a denumerable set of conditions for which violating the coding practice is necessary
to ensure correct behavior.

3. Conformance to the coding practice can be determined through automated analysis, formal
methods, or manual inspection techniques.

Rules must be followed to claim compliance with a standard unless an exceptional condition ex-
ists. If an exceptional condition is claimed, the exception must correspond to a predefined excep-
tional condition and the application of this exception must be documented in the source code.

Recommendations are guidelines or suggestions. Coding practices are defined to be recommenda-
tions when all of the following conditions are met

1. Application of the coding practice is likely to improve system security.

2. One or more of the requirements necessary for a coding practice to be considered a rule cannot be met.

Compliance with recommendations is not necessary to claim compliance with a coding standard.
It is possible, however, to claim compliance with one or more verifiable guidelines. The set of
recommendations that a particular development effort adopts depends on the security require-
ments of the final software product. Projects with high-security requirements can dedicate more
resources to security, and are consequently likely to adopt a larger set of recommendations.

1.2 THE STUDY

Figure 1 shows an overview of the study described in this report. The project ran from August
2007 through March 2008 and consisted of four major tasks.

Figure 1. Software verification and validation project.

In the first phase of the study, the CERT Secure Coding Initiative (SCI) evaluated static analysis
tools for use in the study. In the second phase of the study, CERT SCI developed checkers for the
static analysis tools selected in the first phase. These first two phases of the study are described in
detail in Section 2 of this report. Once the checkers were developed, they were provided to
JPCERT and SRA for use in evaluating source code. Finally, a month was scheduled to analyze
the results and prepare the final report.

2 | CMU/SEI-2008-TR-014

2 Evaluation and Rule Development

The first phase of the project involved evaluating existing commercial and non-commercial
source code analysis tools for suitability for the project. The evaluation process followed was a
first-fit approach adapted from earlier work at the Software Engineering Institute [Wallnau 01].
The evaluation criteria included, but were not limited to

• Effectiveness. To have an impact on industrial practice, it is necessary to start with a tool
that already represents the best of existing practices. By enhancing this tool further, it was
felt that we could advance the state of the practice.

• Extensibility. Extensibility is a critical criterion, because it is necessary to extend the exist-
ing set of rules supported by the static analysis tool to incorporate support for the CERT se-
cure coding rules being developed.

• Suitability. Because this tool is being used by a particular software developer, in a particular
context, it must be suitable to the needs of this developer and the selected projects. Among
other properties, suitability includes availability on the platforms and compilers being used
and the preferences of the software developer.

The following tools were evaluated for this study:

• Fortify SCA version 4.5 (used to create the rules that were then run using version 5.0)

• Lawrence Livermore National Laboratory (LLNL) Compass/ROSE

2.1 FORTIFY SCA

The Fortify Source Code Analyzer Engine (SCA) renders a variety of programming languages
(Java, C, and C++, for example) into an intermediate form that is then processed with a set of al-
gorithms used to identify and flag dangerous coding constructs [Chess 02]. The Fortify Source
Code Analyzer (SCA) consists of five analysis engines. The data flow analyzer, the control flow
analyzer, the semantic analyzer, the structural analyzer, and the configuration analyzer combine to
identify vulnerabilities in source code. Each of these analysis engines uses a different approach to
vulnerability detection.

The data flow analyzer attempts to track user-supplied data from input into a program as it propa-
gates through functions. The purpose of this analyzer is to identify vulnerabilities resulting from
unsafe use of user-supplied data. This analyzer uses global interprocedural taint propagation to
detect vulnerabilities in function calls or operations.

The control flow analyzer looks for vulnerabilities in sequences of operations in a single function
or method. This analyzer applies state machines characterizing unsafe behavior to the supplied
source code. The control flow analyzer determines whether operations are executed in a certain
order by analyzing control flow paths in a program. Using these methods, the analyzer can detect

 SOFTWARE ENGINEERING INSTITUTE | 3

vulnerabilities in sequences of operations resulting in the absence of function calls in addition to
identifying dangerous sequences of function calls.

The semantic analyzer attempts to use signatures to find unsafe function calls. This analyzer scru-
tinizes uses of functions and application programming interfaces (APIs) at an intraprocedural
level to detect vulnerabilities. This analysis engine includes specialized methods of buffer over-
flow, format string, and execution path vulnerability detection in addition to detections of other
types of more general issues. Using these techniques the semantic analyzer can flag any poten-
tially dangerous function call.

The structural analyzer looks for vulnerabilities in code constructs. This analysis engine is the
most flexible and potentially powerful of those offered in Fortify SCA. The relationships between
a line of code and the block that contains the line are scrutinized for possible vulnerabilities by
this analysis engine. The structural analyzer identifies violations of secure programming practices
and techniques that are often difficult to detect through inspection because they encompass a wide
scope involving both the declaration and use of variables and functions.

The configuration analyzer detects vulnerabilities in text properties files and XML configuration
files. This analyzer attempts to identify dangerous key value pairs and unsafe XML elements and
attribute definitions.

Projects are scanned with the Fortify SCA using the sourceanalyzer program provided in the
Fortify program pack. The following is an example of the sequence of commands:

sourceanalyzer -Xmx400M -b sci-a gcc -g3 -o a a.c

sourceanalyzer -Xmx400M -b sci-a -scan -rules sci-rules.xml -rules

sci-structure-rules.xml -level broad -logfile filename.log

The Fortify source code analysis process consists of three phases. These phases are translation,
analysis, and verification.

During the translation phase of the analysis process, Fortify gathers the source code via a series of
commands. The source code is then translated into an intermediate format that is associated with a
user-specified build ID. The build ID should be unique for the project being scanned by Fortify.

The analysis phase follows the translation phase. During this phase, source files identified in the
translation phase are scanned and Fortify SCA creates an analysis results file.

The translation and analysis phase is then followed up by verification. The user inspects the
analysis file for any significant errors reported by Fortify SCA. Errors are in the following form:

[<rule ID number> : <severity> : <rule title> : <analysis engine>]

<source file name>(<line number>) : <details>

Each of the analysis engines included in Fortify SCA is extendable. Custom rules can be written
for each of these analysis engines. These custom rules are written in XML and can be used on
their own or in concert with the rule sets built into Fortify SCA.

4 | CMU/SEI-2008-TR-014

Investigation was done on 113 of 180 Secure Coding Standard C rules and 63 of 99 Secure Cod-
ing Standard C++ rules. The example code from these rules was run through Fortify SCA. Of
these rules, Fortify SCA flagged 16 C rules and 6 C++ rules without further extension of the anal-
ysis engines.

For Fortify SCA to detect violations of the Secure Coding Standards, custom rules were created to
extend the analysis engines. These custom rules extend the control flow analyzer, the semantic
analyzer, and the structural analyzer. Eighteen rules were created to extend the control flow ana-
lyzer, 9 rules were created to extend the semantic analyzer, and 31 rules were created to extend
the structural analyzer.1

After these custom rules were added, Fortify SCA was able to catch all aspects of 27 C rules
and17 C++ rules. Fortify SCA was able to detect only some aspects of an additional 14 C rules
and 5 C++ rules. Overall, Fortify SCA was able to at least partially catch 85 of 176 of the Secure
Coding Standard rules investigated.

 C C++ Total

Total number of Secure Coding Standard Rules 180 99 279

Rules investigated for the study 113 63 176

Rules Fortify SCA implements by default 16 6 22

Rules implemented for Fortify SCA 27 17 44

Rules partially implemented for Fortify SCA 14 5 19

Total number of rules at least partially implemented 57 28 85

Table 1. Summary of Rules Implemented for Fortify SCA.

Some limitations were observed while extending the Fortify analysis engines to detect violation of
CERT secure coding rules. These limitations hampered the quality and quantity of the analysis
rules that could be created. For each secure coding rule, attempts were first made to create an
analysis rule to flag on all noncompliant code. Analysis rules were created to flag some or most
noncompliant code when all could not be detected.

The timing of Fortify SCA analysis, and the consequent nature of the code analyzed, limits many
of the analyzer rules written for this project. Fortify SCA does not examine the source code before
compile time. Rather, Fortify SCA examines the results of the translation phase described above.
Because analysis takes place after translation, none of the analysis engines can match all syntacti-
cal patterns in the original code.

1 There are some rules that appear in both the C and the C++ standards. Duplicates have been removed from this

count, which is by analysis engine.

 SOFTWARE ENGINEERING INSTITUTE | 5

Post-translation analysis also hinders the ability of Fortify SCA to detect many aspects of the Se-
cure Coding Standard rules. Fortify SCA could not detect any of the rules in either the “Preproc-
essor” or the “Signals” categories. All for loops are converted to while loops before Fortify
SCA analyzes the code. The sizeof operator, the const qualifier, and the enum specifier are
all removed during the translation phase. Multiple identifier definitions are automatically resolved
during the translation phase.

Another limitation of Fortify SCA is that its analysis is confined by function boundaries. Fortify
SCA tracks taint, constants, and program state across these boundaries, but does not perform
global typestate analysis. This affects all of the rules in the Secure Coding Standard designed to
address issues that develop because of the way multiple functions interact with one another. This
includes issues associated with referencing objects outside of their lifetime and reopening file
streams, among others.

Fortify SCA’s array-handling limitations also hampered the ability to extend the analysis engines
to flag on the Secure Coding Standard rules. Arrays were transformed into pointers during Fortify
SCA’s translation phase. This conversion causes rules specific to arrays to flag on all pointers,
which results in far too many false positives.

Conditional expressions also posed a problem for Fortify SCA. Fortify SCA ignores conditional
expressions within the Structural analysis engine. This means that rules designed to flag condi-
tional expressions would have to be written in one of the other analysis engines, which limited the
cases of Secure Coding Standards violations that could be flagged.

Tracking variables in the Control Flow analysis engine was also an issue. Fortify SCA tracks da-
ta, not variables, therefore when 0 is assigned to a variable, the state machine stops tracking that
variable. This causes false negatives within rules that attempt to track variables.

The work done to create Fortify rules to extend the Control Flow analyzer, the Semantic analyzer,
and the Structural analyzer was done in continued cooperation with the technical staff at Fortify.

Appendix A provides a detailed description about the implementation of checkers for specific
CERT secure coding rules.

2.2 COMPASS / ROSE

ROSE is a source-to-source framework for source code transformations. Compass will be in-
cluded in the next release of ROSE, but can work with the current release.

Compass is an open source tool designed to easily evaluate arbitrary code using existing rule sets.
Users can also easily configure Compass to use their own domain-specific rules sets. Compass is
simple to extend: Users can add rules by completing the following steps:

1. Add a name for the checker to the script used to generate code template.

2. Fill in the checker code template with approximately a dozen lines of code to define the code
pattern (all in C++ and using the high-level AST IR nodes from ROSE). The amount of code
depends on the rule to specify.

6 | CMU/SEI-2008-TR-014

3. Use the Latex page (generated in the aforementioned directory) to document the checker.

4. Provide test code that demonstrates the problem (which will be used in the documentation
and in testing).

5. Tar up the directory and run the script to submit the checker (the script copies the checker
tarball to a common directory where all the contributed checkers are stored).

Separately (at the other end of the submission process), all the submitted checkers can be auto-
matically assembled into Compass:

1. Run the script that automatically assembles all the checker tarballs into an existing version of
Compass.

2. Run "make" to complete the process, run "make docs" to build the documentation, run "make
test" to test the whole process.

The process is designed to support the contribution of checkers by many users. Compass can be
run in either text or GUI mode. The GUI mode was created in collaboration with Imperial College
London, where a former student developed a Qt-based, ROSE-specific GUI builder.

For example, Compass/ROSE can be used to check for compliance with SIG30-C (“Only call
async-safe functions within signal handlers”) using the following algorithm:

1. Assume an initial list of async-safe functions. This list would be specific to each OS, al-
though POSIX does require a set of functions to be async-safe.

2. Add all application-defined functions that satisfy the async-safe property to the async-safe
function list. Functions satisfy the async-safe property if they (a) only call functions in the
list of async-safe functions, and (b) do not reference or modify external variables except to
assign a value to a volatile static variable of sig_atomic_t type, which can be written un-
interruptedly. This handles the interprocedural case of calling a function in a signal handler
that is itself an async-safe function.

3. Traverse the abstract syntax tree (AST) to identify function calls to the signal function sig-
nal(int, void (*f)(int)).

4. At each function call to signal(int, void (*f)(int)), get the second argument
from the argument list. To make sure that this is not an overloaded function, the function
type signature is evaluated and/or the location of the declaration of the function is verified to
be from the correct file (because this is not a link-time analysis it is not possible to test the
library implementation). Any definition for signal() in the application is suspicious, be-
cause it should be in a library.

5. Perform a nested query on the registered signal handler to get the list of functions that are
called. Verify that each function being called is in the list of async-safe functions. To avoid
repeatedly reviewing each function, the result of the first test of the function should be
stored.

6. Report any violations detected.

For performance reasons, Code patterns in Compass/ROSE are specified directly on the
AST. One can also specify patterns on the control flow or any of the other program analysis

 SOFTWARE ENGINEERING INSTITUTE | 7

graphs in ROSE: call graph, SDG, etc. This solution is not ideal, because it is ROSE specific, but
it permits the level of detail required to specify complex code patterns (mostly because ROSE
does not normalize the AST, so all source-level details are provided).

In the design of the attribute-grammar-based AST traversals, apparently separate traversals of the
AST can be alternatively executed within a single traversal with a performance improvement of
about 110X. Also, current work has demonstrated that this can be additionally parallelized with
good efficiency (multi-core optimization).

ROSE has an easy-to-use and intuitive architecture, which makes it possible to quickly implement
straightforward rules. ROSE also retains considerable information about the compiled code, to the
extent that it is even possible to write rules to check items such as indentation and commenting.

ROSE exhibited the following shortcomings, but these are not considered severe:

1. The documentation is well-structured but incomplete. Consequently, one must often read the
code to determine what something is or does.

2. The structure of the type system model is at a low-level and somewhat opaque. This is most-
ly due to the OO nature of the type classes. To address this issue, we wrote a thin layer over
the type system that makes it easier to use and insulates checkers from changes in the im-
plementation. This approach can be extended to write generalized utility functions to provide
more high-level information about the AST.

3. The ROSE data structures are not easily discoverable. ROSE alleviates this with utilities to
display an AST as a graph or node list with attributes, but the data structures are too complex
and fluctuating for these utilities to display everything.

4. There are some minor, but distracting, issues regarding use of const member functions in the
implementation.

5. ROSE’s ability to recognize the use of macros remains largely experimental because macro
processing takes place in an earlier stage than parsing.

6. A few bugs remain.

7. Because some portions of the implementation remain in flux, the currently recommended
usage is not always apparent.

Despite these shortcomings, the overall quality of the tool is good, and as we become more famil-
iar with it, we should be able to write checkers fairly quickly. The learning curve is surmountable,
but it is steep at the beginning.

One repair strategy for issue (2) is to write a thin layer over the type system that makes it easier to
handle and insulates checkers from changes in the implementation. This can be extended to writ-
ing generalized utility functions to provide more high-level information about the AST.

8 | CMU/SEI-2008-TR-014

3 Project Analysis

Software Research Associates, Inc. (SRA) was selected as the commercial software developer for
the study. Founded in 1967, SRA is one of Japan’s oldest and largest independent software firms.
SRA has a strong presence in the software product market, distributing and supporting many
communications, database and Internet/World Wide Web applications.

SRA evaluated the use of supplemented versions of the Fortify SCA and Compass/ROSE on the
two projects described in Table 2.

Project Language OS Complier Size
(KLOC)

Toll Collection system related
GUI application

C++
(Qt base GUI)

Miracle Linux GCC 3.2.3 264

Video Service Communication
Protocol

C Cent OS (Linux) GCC 3.4.6 30

Table 2: Project selection.

These two software development projects are aimed to develop particular software products for
the private sector, and these products are intended to be used within production environments.

3.1 MEASURING AND ANALYSIS

Each of these two projects was analyzed using versions of the Fortify SCA and Compass/ROSE
supplied with checkers for the CERT Secure Coding rules. Each tool identified a number of de-
fects, and these defects were categorized as positives. To the extent of their available time and
abilities, developers familiar with each project analyzed each positive to determine if they were
true positives, false positives, or false negatives. Because the tools do not make any positive asser-
tions about code correctness, the notion of true negatives was considered an anomalous case and
only applied to code not identified by either tool as defective.

True positives are defects correctly identified by the tool as such; false positives are incorrectly
identified defects. False negatives are defects not detected by a particular tool and must be dis-
covered by other means, such as the use of additional tools, or by manual inspection and testing.
False negatives of particular interest in this project are defects that were true positives from one
tool but undetected by the other. In all cases, the developers performing the analysis recorded the
manner in which the defect was detected. True negatives are only useful for comparison with
other tools that incorrectly identify false positives to indicate that these tools were not fooled.

 SOFTWARE ENGINEERING INSTITUTE | 9

For the purpose of this study, all of the true positive results are, by definition, software defects.
Due to the nature of the defects these tools are configured to detect, we presume that they at least
potentially constitute security flaws. A determination of whether the security flaws discovered as
a result of this analysis actually constitute practical security vulnerabilities is outside the scope of
this study [Seacord 05]. Because access to the product source code was not available to the au-
thors, determinations about the accuracy of the results were made solely by the staff at SRA.

Because of time constraints, checkers were not implemented for each secure coding rule. Conse-
quently, the rules for which checkers were implemented had to be selected.

The rules in the C coding standard have been assigned high, medium, and low priorities. A high
priority rule is one whose violation is likely to result in exploitable code, the exploit is likely to
have severe consequences (for example, allowing an attacker to run arbitrary code), or one that is
difficult or expensive to fix manually. The rules in the C++ secure coding standard are currently
being prioritized, but many rules have not yet been assigned a priority.

The Fortify SCA analysis engines were extended to flag all possible rules in the C coding stan-
dard. Every C coding standard rule was examined with Fortify SCA. All those already flagged by
Fortify SCA were identified. Each of the remaining C coding standard rules were evaluated to
determine if a rule could be written to extend Fortify SCA.

The Fortify SCA analysis engines were also extended to flag all possible rules in the C++ coding
standard. Fortify SCA with the extended rule set created to flag the C++ standard rules was used
to examine every C++ coding standard rule. C++ coding standard rules not flagged were evalu-
ated to determine if a rule could be written to extend Fortify SCA.

The C and C++ coding standard recommendations were evaluated separately after the C and C++
coding standard rules were evaluated. Attempts were made to evaluate every C and C++ coding
standard recommendation in the order they appear in the secure coding standards, starting with the
C coding standard. Efforts concluded, due to time constraints, with the C coding standard recom-
mendations in the "INT" category. Any of the implemented C coding standard recommendations
that applied to C++ coding standard was noted as well.

ROSE-checker development for the C coding standard focused solely on high-priority rules. Due
to schedule constraints, approximately half of the high-priority rules were implemented. Rules
that seemed difficult or unenforceable were ignored. No other criteria were used in the selection
of which high-priority C rules to implement.

The rules in the C++ secure coding standard are currently being prioritized, but many rules have
not yet been assigned a priority. Consequently, prioritization could not be used to determine
which C++ rules to implement. The C++ rules that were implemented consisted of

• Rules that were clearly easy to implement (for example, EXP03-A: Do not overload the &
operator).

10 | CMU/SEI-2008-TR-014

 SOFTWARE ENGINEERING INSTITUTE | 11

• Rules that relied on type information and class hierarchy analysis (for example, OBJ03-A:
Do not overload virtual functions). These all relied on a small body of infrastructure that,
once implemented, made the rules as a group easy to implement.

• A few random rules that were singularly challenging but implementable (for example
ERR01-A: Prefer special types for exceptions).

12 | CMU/SEI-2008-TR-014

4 Results

This section contains the results of the analysis of the Toll Collection system GUI application
and Video Service Communication Protocol projects using both the Fortify SCA and ROSE static
analysis tools. The study focused on CERT rules checkers implemented as part of this study.
More checkers were implemented for Fortify than ROSE, primarily because this effort was started
while ROSE was still being evaluated for suitability in the study.

Checkers
Project Lang Tool Rule

Group Implemented Detected Analyzed

CERT 23 8 8
Fortify

default ?2 21 0

CERT 15 6 3

Toll
Collection

C++

ROSE
default ?2 14 0

CERT 38 20 7
Fortify

default ?2 23 0

CERT 12 3 3

Video
Service

C

ROSE
default ?2 6 0

Table 3. Summary of rules analyzed.

4.1 Fortify Results

Table 4 shows the total number of reports generated by Fortify SCA for the Toll Collection and
Video Service Communication projects. The results are separated by project and rule set. The
“default” rule set consists of checkers shipped by default with Fortify SCA. The CERT rule set
consists of checkers for CERT secure coding rules developed as part of this study.

Project Language Rule Set Total
Toll Collection C++ CERT 186

Toll Collection C++ default 572

Video Service C CERT 408

Video Service C default 396

Table 4. Total Reports.

2 It is difficult to determine precisely how many rules ship with Fortify SCA because of the way they are listed and

grouped. We eventually omitted this value because it was not essential to the study. The number of default
ROSE rules was also omitted, for the same reasons.

 SOFTWARE ENGINEERING INSTITUTE | 13

For these two projects, the CERT rule set generated a higher number of reports for the C language
project than the Fortify default rule set (408 to 396). Conversely, 572 reports were generated by
the Fortify default rule set for C++ compared to 186 reports generated by the CERT C++ rule set.
These results may be explained by the limited number of CERT C++ checkers implemented for
Fortify.

Table 5 illustrates the results for both the Toll Collection and Video Service Communication pro-
jects when analyzed with the Fortify SCA tool for compliance with the CERT C and C++ Secure
Coding rules.

Project Language Total True + False + Unknown True+
Rate

Toll Collection C++ 186 125 61 0 67%

Video Service C 408 90 100 218 47%

Table 5. CERT rules checked with Fortify SCA.

Checkers for C++ rules had a true positive rate of 67 percent, while the C rules had a true positive
rage of 47 percent. All of the C++ reports in this study were validated, while only 190 out of 408
of the C reports were validated because of time constraints. The 47 percent figure is based on the
190 validated reports.

4.1.1 CERT C++ Secure Coding Standard

Violations of 8 of the 23 CERT C++ rules (37.5 percent) implemented for Fortify were detected.

The true positive rate for these checkers was mixed, as shown in Table 6.

Rule Total True + False + Unkown True + Rate
INT35-C 4 4 0 0 10
RES32-C 8 8 0 0 10
INT06-A 88 88 0 0 10
INT31-C 12 7 5 0 5
INT32-C 38 15 23 0 3
DAN34-C 33 3 30 0 9%
INT33-C 1 0 1 0
DCL30-C 2 0 2 0

0%
0%
0%
8%
9%

0%
0%

Table 6. Analysis of Fortify CERT C++ secure coding rules.

A large number of violations of CERT C++ rule INT06-A (“Use strtol() or a related function
to convert a string token to an integer”) were detected with a true positive rate of 100 percent sug-
gesting that the checker is accurate in detecting violations of this rule and that the developers may
not have been previously aware of this recommended coding practice. Violations of some of these
rules, such as DAN34-C (“Do not dereference invalid pointers”) can have rather severe conse-
quences as shown in Table 7.

14 | CMU/SEI-2008-TR-014

Rule Severity Likelihood Remediation Cost Priority Level

DAN34-C 3 (high) 3 (likely) 1 (high) P9 L2

Table 7. Risk analysis for DAN34-C.

Unfortunately, the checker for DAN34-C had a low true positive rate of 9 percent. The cause of this low
positive rate is the use of the exception-handling code block to catch failing new operations and For-
tify’s inability to detect situations in which memory allocation errors are caught by the exception-
handling code block. This accounted for all 30 false positives of DAN34-C analysis, indicating that the
false positive rate of DAN34-C could be significantly reduced if the condition is properly handled.

4.1.2 CERT C Secure Coding Standard

Table 8 shows the results of evaluating the Video Service Communication project using Fortify
SCA for compliance with the CERT C Secure Coding standard.

Rule Total True + False + Unkown True + Rate
ARR30-C 2 2 0 0 100%
INT32-C 75 47 28 0 63%
MEM35-C 40 24 16 0 60%
INT31-C 6 3 3 0 50%
INT30-C 44 14 30 0 32%
INT35-C 13 0 13 0 0%
MEM00-A 10 0 10 0 0%
POS31-C 1 0 0 1
MSC30-C 1 0 0 1
INT10-A 33 0 0 33
INT14-A 14 0 0 14
FIO45-C 1 0 0 1
ENV30-C 1 0 0 1
FIO33-C 3 0 0 3
INT13-A 36 0 0 36
TMP33-C 12 0 0 12
STR03-A 33 0 0 33
INT07-A 40 0 0 40
MEM02-A 4 0 0 4
INT06-A 39 0 0 39

Table 8. Analysis of Fortify CERT C secure coding rules.

Many of these results were not fully analyzed because of time constraints. Of the rules that were
analyzed, both MEM00-A, INT30-C, and INT35-C had noticeably poor results. False positives
for MEM00-A stem from a limitation in Fortify. If malloc() is called but free() is not called
within the same function, Fortify cannot determine if free() is called.

The low true positive rates for INT30-C, and INT35-C are still being analyzed.

 SOFTWARE ENGINEERING INSTITUTE | 15

4.2 Rose Results

Table 9 shows the total number of reports generated by ROSE on the two projects. The results are
separated by project and rule set. The default rule set consists of checkers that are shipped by de-
fault with ROSE. The CERT rule set consists of checkers for CERT secure coding rules devel-
oped as part of this study.

Project Language Rule Set Total

Toll Collection C++ CERT 200

Toll Collection C++ default 1476

Video Service C CERT 7

Video Service C default 70

Table 9. ROSE total reports.

The CERT checkers generated far fewer reports than the default ROSE checkers. Also, the CERT
C rule set generated far fewer reports for the Video Service Communication project than the C++
rule set generated for the Toll Collection project. This is because the ROSE C++ checkers gener-
ated many reports on external header files, while the C checkers did not. Many of the header file
reports were duplicates, because header files are often imported into multiple program files. Con-
sequently, a report in one header file would appear once for every program file that included it.

Table 10 illustrates the results broken down for both the Toll Collection and Video Service Com-
munication projects when analyzed with the ROSE tool for compliance with the CERT C and
C++ Secure Coding rules.

Project Language Total True + False + Unknown True+ Rate

Toll Collection C++ 200 19 51 130 27%

Video Service C 7 5 2 0 71%

Table 10. CERT rules checked with ROSE.

Table 11 provides more detail, by listing the ROSE rules that flagged violations and their rates of
success. ROSE reported violations of 6 of the 15 CERT C++ rules implemented, and 3 of the 12
CERT C rules implemented. The 6 C++ rules were ERR01-A, ERR02-A, OBJ32-C OBJ00-A,
OBJ03-A, and RES35-C, and the C rules were MSC33-C, ARR00-A, and STR31-C.

16 | CMU/SEI-2008-TR-014

Rule Total True + False + Unkown True +
Rate

OBJ32-C 23 9 0 14 100%
ERR02-A 18 10 8 0 56%
ERR01-A 43 0 43 0 0%
OBJ00-A 7 0 0 7
OBJ03-A 72 0 0 72
RES35-C 37 0 0 37
ARR00-A 3 3 0 0 100%
MSC33-C 1 1 0 0 100%
STR31-C 3 1 2 0 33%

Table 11. CERT rules checked with ROSE.

The C results are encouraging, as only one rule had any false positives. Two rules yielded no false
positives: ARR00-A (“Be careful using the sizeof operator to determine the size of a type”)
and MSC33-C (“Do not use the rand() function for generating pseudorandom numbers”). Both
indicate fairly clear patterns; ARR00-A catches use of a specific coding idiom in improper places,
and MSC33-C catches any usage of the rand() function. In addition, ARR00-A can have severe
consequences, as shown in Table 12:

Rule Severity Likelihood Remediation Cost Priority Level

ARR00-A 3 (high) 2 (medium) 3 (low) P9 L2

Table 12. Risk analysis for ARR00-A.

ROSE also reported violations in many external header files. These files were part of the operat-
ing system, or ROSE itself, or external software packages used by Toll Collection. Due to time
constraints, we did not analyze these violations and report them as “Unknown.” It might be pru-
dent to filter out ROSE errors on external header files. However, header files that are part of the
project being analyzed should definitely not be excluded, because they will usually contain the
class definitions, template definitions, and namespaces, which are a rich source of coding rule
violations. See the next section for a cursory analysis of header-file reports.

The reports on C and C++ files are fairly encouraging. Three of our six rules reported no false
positives and several true positives. One rule (ERR01-A) reported 43 false positives, out of a total
of 53 false positives. Because ERR01-A reported no true positives, removing the rule would have
improved the overall success rate significantly without any cost. The results were kept, however,
to preserve the integrity of the study. Fortunately, every other rule that had false positives also had
true positives.

Two rules (ERR02-A and STR31-C) had both false positives and true positives. Fortunately, they
both had fairly few invocations and a promising success rate (56 percent and 33 percent, respec-
tively). Inspecting each report of these rules was consequently a manageable task. Checkers for
C++ rules had a true-positive rate of 27 percent, while the C rules had a true-positive rate of 71
percent. All 7 of the C reports in this study were analyzed, while, because of time constraints,

 SOFTWARE ENGINEERING INSTITUTE | 17

only 70 out of 400 of the C++ reports were analyzed. The low true positive rate of 27 percent was
mainly due to the rule ERR01-A, which alone provided 43 of the 51 false positives.

Upon further analysis, we discovered the cause of the false positives in ERR01-A and ERR02-A.
These rules state that one should neither throw, nor catch, data objects except those that inherit
from std::exception. The false positives were indeed throwing and catching standard ex-
ceptions provided in the standard C++ include files, but our diagnostic code failed to recognize
the exceptions as valid. We will fix the code for future analysis, so these false positives should not
recur.

There was exactly one secure coding rule that both Fortify SCA and ROSE reported violations on.
Table 13 presents both ROSE and Fortify’s analyses of this rule:

Project Tool Rule Filename Line NumberFortify CERTROSE CERT
IPTV FORTIFY MSC30-C File00039.c 44 ?+ T+
IPTV ROSE MSC33-C File00039.c 44 ?+ T+

Table 13. Rules reported by both Fortify and ROSE.

The slightly different names (MSC30-C and MSC33-C) actually refer to the same rule, which is
correctly labeled MSC30-C. Both Fortify and ROSE identify a single violation of this rule; both
identify the same file. The ROSE report was considered a true positive, while the Fortify report
was not analyzed. It is reasonable to assume Fortify and ROSE are reporting the same violation.

The rule in question (MSC30-C or MSC33-C) cautions against using the rand() function as a
pseudo-random number generator, as its results are not sufficiently random. This is an easy rule to
enforce, as all one needs to do is search the source code for instances of a rand() function call.

4.2.1 External Header Rose Analysis

Because ROSE issued many reports on C++ header files, we performed a small analysis of ROSE
on these files. We did this by running a ROSE diagnostic tool on the tiny program outlined in
Figure 2. This program was run on Linux (Ubuntu 7.10), and the header files are provided by
Rose (version 0.9.1a), so no compiler was actually involved in the study. The results are shown in
Table 14.

#include <locale>

#include <vector>

int main() {

 return 0;

}

Figure 2. Simple header diagnosis program.

18 | CMU/SEI-2008-TR-014

Rule File Name Line # Text
OBJ00-A bits/locale_classes.h 105 is public data.

OBJ32-C bits/locale_classes.h 524 _Impl is a non-explicit single-argument constructor.

OBJ00-A bits/ios_base.h 256 is public data.

OBJ00-A bits/ios_base.h 469 is public data.

OBJ00-A bits/ios_base.h 498 is public data.

OBJ00-A bits/locale_facets.h 697 is public data.

OBJ03-A bits/locale_facets.h 1003 overloads virtual function on line 1020

OBJ03-A bits/locale_facets.h 1020 overloads virtual function on line 1003

OBJ03-A bits/locale_facets.h 1036 overloads virtual function on line 1053

OBJ03-A bits/locale_facets.h 1053 overloads virtual function on line 1036

OBJ03-A bits/locale_facets.h 1073 overloads virtual function on line 1096

OBJ03-A bits/locale_facets.h 1096 overloads virtual function on line 1073

OBJ03-A bits/locale_facets.h 1122 overloads virtual function on line 1148

OBJ03-A bits/locale_facets.h 1148 overloads virtual function on line 1122

OBJ00-A bits/locale_facets.h 1236 is public data.

OBJ03-A bits/locale_facets.h 1280 overloads virtual function on line 1299

OBJ03-A bits/locale_facets.h 1299 overloads virtual function on line 1280

OBJ03-A bits/locale_facets.h 1352 overloads virtual function on line 1369

OBJ03-A bits/locale_facets.h 1369 overloads virtual function on line 1352

OBJ03-A bits/locale_facets.h 1385 overloads virtual function on line 1402

OBJ03-A bits/locale_facets.h 1402 overloads virtual function on line 1385

OBJ03-A bits/locale_facets.h 1422 overloads virtual function on line 1444

OBJ03-A bits/locale_facets.h 1444 overloads virtual function on line 1422

OBJ03-A bits/locale_facets.h 1467 overloads virtual function on line 1493

OBJ03-A bits/locale_facets.h 1493 overloads virtual function on line 1467

OBJ00-A bits/codecvt.h 346 is public data.

OBJ00-A bits/codecvt.h 404 is public data.

OBJ00-A bits/stl_bvector.h 71 is public data.

OBJ00-A bits/stl_bvector.h 112 is public data.

OBJ32-C bits/stl_bvector.h 282 _Bit_const_iterator is a non-explicit single-argument constructor.

RES35-C pthread.h 520 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C pthread.h 520 a class with a pointer data member should probably define a copy constructor

RES35-C exception 54 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C exception 66 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C new 55 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C bits/ios_base.h 207 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C bits/ios_base.h 466 a class with a pointer data member should probably define a copy constructor

RES35-C bits/ios_base.h 496 a class with a pointer data member should probably define a copy constructor

RES35-C bits/ios_base.h 530 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C typeinfo 139 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C typeinfo 149 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C bits/stl_bvector.h 69 if any of copy constructor copy assignment and destructor are declared all thre

RES35-C bits/stl_bvector.h 69 a class with a pointer data member should probably define a copy constructor

Table 14. CERT C++ rules checked with ROSE in standard header file.

 SOFTWARE ENGINEERING INSTITUTE | 19

The OBJ00-A rule forbids class-member data being declared public. In C++ a struct is merely
a class with all members public. Accordingly, the OBJ00-A reports are all of struct member
declarations.

OBJ03-A stipulates that virtual functions should not be overloaded, lest a derived class override
only some of the overloaded virtual function, which “hides” the others. The lo-
cale_facets.h defines classes and templates for character types, and several classes provide
do_widen(), do_narrow(), do_toupper(), and do_tolower() methods to operate on
their respective character types. Each method is virtual and overloaded; each class provides one
method to act on a single character, and one method to act on a range of characters. In this case,
the header is clearly designed in violation of this rule. Thus, the rule may be wrong, or the header
may be wrong, but the checker is correctly enforcing the rule as specified.

OBJ32-C stipulates that all single-argument constructors should be declared explicit. This
prevents unexpected type conversions by forcing the developer to convert types by using explic-
itly-specified constructors or by type-casting. The OBJ32-C reports are non-explicit, single-
argument constructor declarations internal to vectors. This suggests that OBJ32-C should be re-
classified as a recommendation and not a rule.

Finally, RES35-C consists of two components. First, if a class declares a copy constructor, as-
signment operator, or destructor, it should declare all three methods. Second, a class should also
declare all three methods if it contains a pointer. This requires an object to assume some responsi-
bility for any other object it may point to.

The RES35-C reports within <pthread> all complain about a class that contains pointer mem-
bers. The other RES35-C reports all complain about classes that have virtual member functions
and consequently virtual destructors, but lack assignment operators or copy constructors.

In all these cases, the checkers faithfully enforced the rules as they are written. But the rules sim-
ply do not include certain exceptional cases (for example, virtual destructors), or are interpreted
overly strictly (for example, disallowing structs), or can be judiciously broken under special
circumstances without loss of security (for example, non-explicit 1-arg constructors). Finally, all
the rules are considered to be of low severity because violations of these rules tend not to have
severe consequences and are unlikely to result in an exploitable vulnerability. They all conform to
common C++ style guidelines.

In conclusion, the checkers are indeed performing as advertised, and are indeed signaling rule
violations in the header files. However, these violations are not necessarily security vulnerabilities
waiting to be exploited but are more indicative of valid exceptions to the rules. Consequently,
there is a need to improve the definitions of these rules, adding exceptions where appropriate, and
modify the checkers to handle these exceptions accordingly.

20 | CMU/SEI-2008-TR-014

5 Summary

Static analysis tools can be effectively used to identify and eradicate software defects that, in
many cases, contribute to vulnerabilities in software products. Out-of-the-box versions of Fortify
and ROSE are capable of finding software defects in commercially developed code that, left un-
mitigated, could result in software vulnerabilities. However, this study demonstrated that both of
these tools benefited from the development of additional checkers to validate compliance with the
CERT C and C++ Secure Coding Standards.

Both Fortify and ROSE can be extended to evaluate source code for violations of CERT secure
coding rules and recommendations, because of their ability to perform syntactic (and some se-
mantic) analysis. ROSE has a slight advantage in syntactic analysis, because it does not normalize
the syntactic parse tree. Consequently, it can discover violations in areas, such as signal handling,
that are not possible to check using Fortify. On the other hand, Fortify has the advantage of ship-
ping with a larger number of default rules and, as a commercial tool, is more polished than ROSE.

Both ROSE and Fortify perform static analysis only. Because of this limitation, it is possible to
create code that Fortify and ROSE cannot verify. In fact, it is easy to create code that cannot be
easily be verified without actually running the code. This undermines any advantage static analy-
sis might have over dynamic analysis. Because it is not possible to fully validate compliance with
the CERT secure coding standards, the study focused on discovering violations of rules that are
susceptible to detection using static analysis.

Neither ROSE nor Fortify are able to validate compliance with secure coding rules dealing with
preprocessor directives. This is not surprising, because most C compilers are also unable to detect
these problems because these directives are handled by a separate preprocessor. There is currently
a research project to endow ROSE with macro awareness, but it is not ready for widespread use.
Fortify has additional limitations on how it simplifies the parse tree. It eliminates some typecasts,
and sizeof() operators and signal handling. Consequently, Fortify cannot be used to discover
violations or rules and recommendations concerning the use of the sizeof() and signals.

The exercise of writing and testing the checkers helps refine the rules themselves, requiring the
reexamination of corner-cases and exceptions to the rules. In particular, some of the C++ recom-
mendations may be violated under special circumstances (such as non-explicit single-argument
constructors), when the benefits of violating the rule are significant, and judged to outweigh the
costs. These cases need to be enumerated as allowable exceptions in the CERT C++ Secure Cod-
ing Standard.

Finally, many secure coding rules and recommendations have not yet been implemented in either
Fortify or ROSE. Furthermore, refinement of the C and C++ secure coding rules will require us to
make corresponding refinements to the checkers.

 SOFTWARE ENGINEERING INSTITUTE | 21

Overall, the project was successful because the extended source code analysis tools successfully
discovered a number of software defects in both projects evaluated, demonstrating the effective-
ness of both the CERT Secure Coding Standards and the static analysis tools evaluated in improv-
ing software quality. The project was also successful in identifying ways in which both the CERT
Secure Coding Standards and the static analysis tools evaluated could be further improved.

22 | CMU/SEI-2008-TR-014

Appendix A Fortify C Rules

The information included in this appendix is an artifact of the analysis process and has been in-
cluded to provide some of the details behind the analysis presented in the main body of this re-
port. This information is neither complete nor definitive and should be used with caution.

Rule Severity Progress Description Notes

PRE00-A low UNABLE Prefer inline functions to macros. Fortify analyzes code after
preprocessing is done.

PRE01-A low UNABLE Use parentheses within macros
around variable names.

Fortify analyzes code after
preprocessing is done.

PRE02-A low UNABLE Macro expansion should always
be parenthesized for function-like
macros

Fortify analyzes code after
preprocessing is done.

PRE03-A low UNABLE Avoid invoking a macro when
trying to invoke a function.

Fortify analyzes code after
preprocessing is done.

PRE05-A low UNABLE Use parenthesis around any
macro definition containing opera-
tors.

Fortify cannot detect this,
code is analyzed after pre-
processing.

PRE30-C low UNABLE Do not create a universal charac-
ter name through concatenation.

Fortify analyzes code after
preprocessing is done.

PRE31-C low UNABLE Never invoke an unsafe macro
with arguments containing as-
signment, increment, decrement,
or function call.

Fortify analyzes code after
preprocessing is done.

DCL01-A low UNABLE Do not reuse variable names in
sub-scopes.

Fortify cannot compare con-
tents of two different scopes.

DCL02-A low UNABLE Use visually distinct identifiers. This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

DCL03-A low UNABLE Place const as the rightmost dec-
laration specifier.

This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

DCL04-A low UNABLE Take care when declaring more
than one variable per declaration.

This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

 SOFTWARE ENGINEERING INSTITUTE | 23

DCL05-A low UNABLE Use type definitions to improve
code readability.

This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

DCL06-A low UNABLE Use meaningful symbolic con-
stants to represent literal values in
program logic.

This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

DCL07-A low Include type information in function
declarators.

The evaluator could not get
any of these code examples
to compile. These recom-
mendations may have been
addressed by the compiler.

DCL08-A medium UNABLE Declare function pointers using
compatible types.

This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

DCL09-A low UNABLE Declare functions that return an
errno with a return type of
errno_t .

Fortify cannot detect the re-
turn value of a function.

DCL10-A medium UNABLE Take care when using variadic
functions.

This is not possible, as in-
sert (loc++, ..) is
translated into two state-
ments: loc_0 = loc++ and
insert(loc_0, ...).

DCL30-C high FORTIFY
PARTIAL

Declare objects with appropriate
storage durations.

Fortify catches the case of
declaring an array and then
returning a pointer to that
array within a function. This is
no longer possible with For-
tify.

DCL32-C low UNABLE Guarantee identifiers are unique. Fortify does not have a
mechanism to deal with this
issue properly.

DCL33-C medium UNABLE Ensure that source and destination
pointers in function arguments do
not point to overlapping objects if
they are restrict qualified.

DCL34-C medium UNABLE Use volatile for data that cannot be
cached.

The evaluators do not believe
Fortify can do this.

DCL36-C low UNABLE Do not use identifiers with different
linked classifications.

This can’t be found with the
structural analyzer. Currently,
the Fortify front end tries to
resolve multiple definitions as
well as it can and then pre-
sents a consistent view to the
analyzers, so a structural rule
doesn't even see the multiple
definitions.

24 | CMU/SEI-2008-TR-014

EXP00-A low UNABLE Use parentheses for precedence
of operation.

This can be done with a sim-
ple grep, Fortify doesn't
seem to have anything built in
to do this.

EXP01-A high UNABLE Do not take the sizeof a pointer
to determine the size of a type.

sizeof is preprocessed out
before Fortify can analyze the
code.

EXP02-A low UNABLE The second operands of the logi-
cal AND and OR operators should
not contain side effects.

Cannot flag on "&&".

Fortify front-end translates the

if (a && b) ... to if
(a)

 { if (b) ... }

and '(i++) == max' is trans-
lated to 'tmp = i; i = i + 1; tmp
== max'

To handle this case, Fortify
needs to reverse the transla-
tion which it cannot now do.

EXP03-A medium UNABLE Do not assume the size of a struc-
ture is the sum of the sizes of its
members.

sizeof is preprocessed out
before Fortify can analyze the
code.

EXP04-A medium UNABLE Do not perform byte-by-byte com-
parisons between structures.

Can create a semantic rule to
flag on memcmp(), but can't
flag structures being passed
that fn.

EXP05-A low UNABLE Do not cast away a const qualifica-
tion.

Cannot flag on const.

EXP06-A low UNABLE Operands to the sizeof operator
should not contain side effects.

sizeof is preprocessed out
before Fortify can analyze the
code.

EXP08-A high UNABLE Ensure pointer arithmetic is used
correctly.

sizeof is preprocessed out
before Fortify can analyze the
code.

EXP09-A high UNABLE Use sizeof to determine the size of
a type or variable.

sizeof is preprocessed out
before Fortify can analyze the
code.

EXP30-C medium PARTIAL Do not depend on order of evalua-
tion between sequence points.

EXP31-C low UNABLE Do not modify constant values.

 SOFTWARE ENGINEERING INSTITUTE | 25

EXP32-C low UNABLE Do not access a volatile object
through a non-volatile reference.

EXP33-C high FORTIFY

PARTIAL

Do not reference uninitialized vari-
ables.

This catches the example
code, but doesn't always
recognize initialization. If
initialization is done in an-
other function, it is not recog-
nized. Unexpected behavior
occurs when pointers are
used. There are many false
positives. Fortify catches as
"low : Uninitialized Variable :
controlflow."

EXP33-C high FORTIFY

PARTIAL

Do not reference uninitialized vari-
ables.

This catches the example
code, but doesn't always
recognize initialization. If
initialization is done in an-
other function, it is not recog-
nized. Unexpected behavior
occurs when pointers are
used. There are many false
positives. Fortify catches as
"low : Uninitialized Variable :
controlflow."

EXP34-C high FORTIFY Ensure a pointer is valid before
dereferencing it.

EXP35-C low UNABLE Do not access or modify the result
of a function call after a subse-
quent sequence point.

EXP36-C low UNABLE Do not cast between pointers to
objects or types with differing
alignments.

EXP37-C low UNABLE Call functions with the correct
arguments.

The Structural Rule language
does not support the predi-
cate required to detect the
function call violation because
it requires the universal quan-
tifier "forall", which we don't
support at this moment.

INT01-A medium PARTIAL Use size_t for all integer values
representing the size of an object.

This is partially covered by
the rule for INT32-C - but
Fortify can't flag on type
size_t, Fortify sees size_t
as unsigned long.

INT05-A medium DONE Do not use functions that input
character data and convert the
data if these functions cannot
handle all possible inputs.

This is covered by FIO33-C.

26 | CMU/SEI-2008-TR-014

INT06-A medium DONE Use strtol() to convert a string
token to an integer.

Created a structural rule to
flag atoi, atol, and atoll when
they're passed strings.

INT07-A medium DONE Explicitly specify signed or un-
signed for character types.

Created structural rule to
check if int is assigned a char
(not unsigned or signed
char) or if an operation is
done with a char.

INT09-A low UNABLE Ensure enumeration constants
map to unique values.

Can't flag on enum.

INT10-A low DONE Do not make assumptions about
the sign of the resulting value from
the remainder % operator.

Created a structural rule that
flags on percent

INT13-A high DONE Do not assume that a right-shift
operation is implemented as a
logical or an arithmetic shift.

Able to create a structural rule
to flag when a right-shift op-
eration is performed.

INT14-A medium PARTIAL Distinguish bitmaps from numeric
types.

Able to create a structural rule
to match when an arithmetic
operation is preformed in the
same line as a bit manipula-
tion operation. Not able to
distinguish between opera-
tions on positive numbers and
operations on negative num-
bers.

INT30-C low PARTIAL Do not perform certain operations
on questionably signed results.

Currently, there's no way to
determine the size of a type,
but in SCA 5.0 the structural
analyzer's "Type" objects will
have a "storageSize" property
that gives the number of
bytes the type occupies. Cur-
rently, if you have the Type
object for "MyStruct*", you
can determine the size of
"MyStruct*", but you can't just
"remove the pointer" and
obtain the size of "MyStruct".
To do that, enhancements
would be required to make
the "Type" object to be a tree
structure.

INT31-C high DONE Ensure that integer conversions do
not result in lost or misinterpreted
data.

Able to create a structural rule
that looks for type conversion
without checking the variable
on the left hand side of the
assignment.

INT32-C high DONE Ensure that integer operations do
not result in an overflow.

Able to create a structural rule
that tests to see if the affected
operations are being pre-
formed and there is no "if"

 SOFTWARE ENGINEERING INSTITUTE | 27

statement.

Further testing revealed many
false positives, most of which
related to for loops. Added a
check to flag only if it's not
part of a for loop statement.
Not sure whether this is the
correct way to address these
false positives.

INT33-C low DONE Ensure that division and modulo
operations do not result in divide-
by-zero errors.

Created rule similar to INT32-
C.

INT35-C high DONE Upcast integers before comparing
or assigning to a larger integer
size.

INT36-C high DONE Do not shift a negative number of
bits or more bits than exist in the
operand.

Covered by rule for INT32-C.

INT37-C low DONE Arguments to character handling
functions must be representable
as an unsigned char.

Wrote a structural rule to flag
when a char handling fn from
ctype.h is passed anything
but an unsigned char.

FLP30-C low DONE Take granularity into account when
comparing floating point values.

Created a structural rule to
flag when an if statement
consists of two floats being
compared in the form f == g.

FLP31-C low UNABLE Do not call functions expecting real
values with complex values.

Fortify won't flag any of these
functions.

FLP32-C medium DONE Prevent domain errors in math
functions.

Created a control flow rule to
handle this.

FLP33-C low PARTIAL Convert integers to floating point
for floating point operations.

Created a structural rule to
flag when an assignment
statement for a variable of
type double or float contains
an operation that does not
result in either a double or a
float. Fortify incorrectly flags
the first compliant code solu-
tion with the rule written.

FLP34-C low DONE Ensure that demoted floating point
values are within range.

Created a structural rule to
flag when a double or long
double is demoted to float or
when a long double is de-
moted to float and there is no
if block to check to make sure
the larger variable doesn't
contain a value that the
smaller can't contain.

28 | CMU/SEI-2008-TR-014

ARR00-A high UNABLE Be careful using the
sizeof operator to
determine the size of an array.

sizeof is preprocessed out
before Fortify can analyze the
code.

ARR30-C high PARTIAL Guarantee that array indices are
within the valid range.

ARR31-C high UNABLE Use consistent array notation
across all source files.

This can’t be found with the
structural analyzer. Currently,
the Fortify front end tries to
resolve multiple definitions
and then presents a consis-
tent view to the analyzers, So,
a structural rule doesn't even
see the multiple definitions.
Can't do this for the same
reason we can't do DCL36-C.

ARR32-C high UNABLE Ensure size arguments for vari-
able-length arrays are in a valid
range.

Created a structural rule to
flag when an array is dynami-
cally allocated and the value
is not properly checked. This
will flag on the example com-
pliant code because Fortify
can't see outside of a single
function's scope.

This rule generates too many
false positives. Fortify can't
explicitly detect arrays
(verses references to other
types of pointers), and this
rule ends up flagging on
many things that don't fall into
the rule.

ARR33-C high FORTIFY Guarantee that copies are made
into storage of sufficient size.

Catches the code in the
NCCE.

ARR34-C high UNABLE Ensure that array types in expres-
sions are compatible.

Fortify won’t flag on the array
access/assignments nor iden-
tify the differences in the
types in the example code.

STR02-A medium FORTIFY Sanitize data passed to complex
subsystems.

Fortify flags the example code
as
"\[1E605754626A177B97219
05D023B495E : medium :
Command Injection : seman-
tic \]".

STR03-A low DONE Do not inadvertently truncate a
null-terminated byte string.

Created a control flow rule to
flag when strncpy,
strncat, fgets, or
snprintf are called and the
result is used without a test.

 SOFTWARE ENGINEERING INSTITUTE | 29

STR05-A low UNABLE Prefer making string literals const-
qualified.

Fortify cannot distinguish
between char and char
const.

STR06-A low FORTIFY Don't assume that strtok()
leaves its string argument un-
changed.

Fortify catches this with
\[CDFD0C4C211178014C479
40B7C19EA30 : medium :
Missing Check against Null :
controlflow \] and
\[2F6C99890155DBEB91367
CA22A5D7E74 : low : Obso-
lete : semantic \].

STR07-A low PARTIAL Use plain char for character data. The “” tag was added to rule.
Created a structural rule to
flag when an unsigned
char is assigned a String
Literal. Only a partial fix be-
cause Fortify can't differenti-
ate between char and
signed char.

STR30-C low UNABLE Do not attempt to modify string
literals.

Not currently possible in For-
tify.

STR31-C high FORTIFY Guarantee that storage for strings
has sufficient space for character
data and the null terminator.

Fortify flags the strcpy and
the getenv example code
with " high : Buffer Overflow :
dataflow ", the first bit of ex-
ample code Fortify can't deal
with since it uses sizeof.

STR32-C high UNABLE Guarantee that all byte strings are
null terminated.

STR33-C high PARTIAL Size wide character strings cor-
rectly.

STR34-C medium DONE STR34-C. Cast characters to un-
signed types before converting to
larger integer sizes.

Created a structural rule to
flag when an int or long is
assigned a char.

MEM00-A high DONE Allocate and free memory in the
same module, at the same level of
abstraction.

Created a control flow rule to
catch fns that have just mal-
loc or just free.

MEM02-A low DONE Do not cast the return value from
malloc().

Created structural rule to flag
a variable assignment when
the return value of malloc()
type doesn't match the type
being assigned.

MEM30-C high FORTIFY Do not access freed memory.

MEM31-C high FORTIFY Free dynamically allocated mem-
ory exactly once.

30 | CMU/SEI-2008-TR-014

MEM32-C low FORTIFY Detect and handle critical memory
allocation errors.

MEM33-C low UNABLE Use flexible array members for
dynamically sized structures.

Fortify can't flag on array
declarations inside a struct.

MEM34-C low PARTIAL Only free memory allocated dy-
namically.

MEM35-C high PARTIAL Allocate sufficient memory for an
object.

Created a structural rule to
flag when malloc(), cal-
loc(), or realloc() are
called and multsize_t is
not or when memcpy() is
called with a length value
other than size_t. Fortify
can't flag on sizeof, so
won't catch the third non-
compliant example.

FIO30-C high FORTIFY Exclude user input from format
strings.

FIO31-C medium UNABLE Do not simultaneously open the
same file multiple times.

Fortify cannot detect this.

FIO32-C medium FORTIFY Detect and handle file operation
errors.

FIO33-C low DONE Detect and handle input output
errors resulting in undefined be-
havior.

FIO34-C high DONE Use int to capture the return value
of character IO functions.

FIO35-C high DONE Use feof() and ferror() to
detect end-of-file and file errors.

FIO36-C high UNABLE Do not assume a newline charac-
ter is read when using fgets().

FIO37-C high FORTIFY Don't assume character data has
been read.

FIO38-C low PARTIAL Do not use a copy of a FILE object
for input and output.

Pointer issues leads to false
negatives.

FIO39-C medium DONE Do not read in from a stream di-
rectly following output to that
stream.

FIO40-C low PARTIAL Reset strings on fgets() failure.

FIO41-C medium UNABLE Do not call getc() or putc()
with parameters that have side
effects.

 SOFTWARE ENGINEERING INSTITUTE | 31

FIO42-C medium DONE Ensure files are properly closed
when they are no longer needed.

FIO43-C high FORTIFY
PARTIAL

Do not copy data from an un-
bounded source to a fixed-length
array.

Fortify catches the gets()
and scanf(), but not the
getchar() example. It
remains uncertain how to
address the getchar()
example.

FIO44-C medium DONE Only use values for fsetpos()
that are returned from fget-
pos().

FIO45-C medium UNABLE Do not reopen a file stream. Attempted a control flow rule,
but this can't be done be-
cause it requires a larger
scope than Fortify can deal
with.

TMP30-C high UNABLE Temporary files must created with
unique and unpredictable file
names.

TMP32-C high FORTIFY Temporary files must be opened
with exclusive access.

Fortify catches this with "In-
secure Temporary File", a
semantic rule of low severity.
However, it also catches our
advised compliant solution
(mkstemp()) with "Insecure
Temporary File".

TMP33-C medium DONE Temporary files must be removed
before the program exits.

Created a control flow rule to
flag when tmpfile(),
fopen(), mktemp(), etc.
are called rather than
tmpfile_s() or
mkstemp().

ENV30-C low DONE Do not modify the string returned
by getenv().

Check for completion.

ENV31-C low UNABLE Do not rely on an environment
pointer following an operation that
may invalidate it.

ENV32-C low UNABLE Do not call the exit() function
more than once.

ENV33-C low UNABLE Do not call the longjmp() func-
tion to terminate a call to a function
registered by atexit().

Fortify can't flag this because
it cannot compare the con-
tents of two different scopes.

SIG30-C high UNABLE Only call asynchronous-safe func-
tions within signal handlers.

Can't detect signal handlers in
Fortify.

32 | CMU/SEI-2008-TR-014

 SOFTWARE ENGINEERING INSTITUTE | 33

SIG31-C high UNABLE Do not access or modify shared
objects in signal handlers.

Can't detect signal handlers in
Fortify.

SIG32-C high UNABLE Do not call longjmp() from
inside a signal handler.

Can't detect signal handlers in
Fortify.

SIG33-C low UNABLE Do not recursively invoke the
raise() function.

Can't detect signal handlers in
Fortify.

MSC30-C low DONE Do not use the rand function.

MSC31-C low UNABLE Ensure that return values are
compared against the proper type.

Fortify can't distinguish be-
tween time_t and long or
size_t and unsigned long.

POS30-C low UNABLE Use the readlink() function
properly.

sizeof is preprocessed out
before Fortify can analyze the
code.

POS31-C medium DONE Do not unlock or destroy another
thread's mutex.

Created a control flow rule to
flag when a function destroys
a lock before acquiring that
lock.

POS32-C medium UNABLE Include a mutex when using bit-
fields in a multi-threaded environ-
ment.

Fortify can't flag on this.
There's a scope issue and a
preprocessing issue here.

POS33-C low FORTIFY Do not use vfork().

POS34-C high DONE Do not call putenv() with an
automatic variable as the argu-
ment.

Created a Fortify structural
rule to flag when putenv()
is called with a variable that is
not static.

34 | CMU/SEI-2008-TR-014

Appendix B Fortify C++ Rules

The information included in this appendix is an artifact of the analysis process and has been in-
cluded to provide some of the details behind the analysis presented in the main body of this re-
port. This information is neither complete nor definitive and should be used with caution.

Rule Severity Progress Description Notes

PRE31-C low UNABLE Prefer inline functions
to macros.

Fortify analyzes code after pre-
processing is done.

PRE32-C low UNABLE Use parentheses
within macros around
variable names.

Fortify analyzes code after pre-
processing is done.

PRE33-C low UNABLE Macro expansion
must always be par-
enthesized.

Fortify analyzes code after pre-
processing is done.

DCL01-A low UNABLE Do not reuse variable
names in sub-scopes.

Fortify is not able to address
scope issues.

DCL02-A UNABLE Use visually distinct
identifiers.

This can be done with a simple
grep. Fortify doesn't seem to
have anything built in to do this.

DCL03-A UNABLE Place const as the
rightmost declaration
specifier.

This can be done with a simple
grep. Fortify doesn't seem to
have anything built in to do this.

DCL04-A low UNABLE Declare no more than
one variable per dec-
laration.

This can be done with a simple
grep. Fortify doesn't seem to
have anything built in to do this.

DCL30-C low DONE Do not use names
reserved for the im-
plementation.

Created a structural rule to catch
variables named with two under-
scores or those that begin with an
underscore followed by a capital
letter.

DCL31-C low FORTIFY Avoid self initializa-
tion.

Fortify flags this as "Poor Style :
Redundant Initialization : struc-
tural".

EXP06-A UNABLE Use parentheses for
precedence of opera-
tion.

This can be done with a simple
grep. Fortify doesn't seem to
have anything built in to do this.

EXP07-A low UNABLE Operands to the
sizeof operator
should not contain
side effects.

sizeof is preprocessed out
before Fortify can analyze the
code.

 SOFTWARE ENGINEERING INSTITUTE | 35

EXP30-C low UNABLE Do not cast away
const.

Fortify cannot distinguish weather
a variable is const or not.

EXP31-C low UNABLE Do not modify con-
stant values.

Same as C rule.

EXP32-C low UNABLE Do not access a vola-
tile object through a
non-volatile reference.

Same as C rule.

EXP33-C low FORTIFY
PARTIAL

Do not reference
uninitialized variables.

Same as C rule. This catches the
example code, but doesn't al-
ways recognize initialization. If
initialization is done in another
function, it is not recognized.
Unexpected behavior occurs
when pointers are used. Many
false positives. Fortify catches as
"low : Uninitialized Variable :
controlflow".

EXP34-C medium UNABLE Do not depend on
order of evaluation
between sequence
points.

Same as EXP30-C C rule.

Need to identify sequence point.
Probably overly difficult to imple-
ment in Fortify.

EXP35-C high DONE Ensure that the right
hand operand of a
shift operation is
within range.

Not sure whether this is possible
in a control flow rule.

This is caught with the structural
rule for INT31-C - it looks to me
like these rules are related
enough to allow one rule to catch
them both, so I'm going to leave
INT31-C to catch it and mark it
"DONE"

EXP36-C medium PARTIAL Do not cast or delete
pointers to incomplete
classes.

Wrote a structural rule that de-
tects when a variable of type
\[UnknownType\] is assigned
something that is not
\[UnknownType\]. There is no
way to detect casts in Fortify. It
won't detect inside of a class
declaration.

EXP37-C low PARTIAL Avoid side effects in
assertions.

The evaluator was able to create
a structural rule that catches
assert(index+\+ == 0);
or assert(index ==
c.size()); in a function other
than "main", but was not able to
ensure that "index" or "c" (in
these examples) are parameters
of the enclosing function.

36 | CMU/SEI-2008-TR-014

INT01-A PARTIAL Use size_t for all
integer values repre-
senting the size of an
object.

This is partially covered by the
rule for INT32-C, but Fortify can't
flag on type size_t. Fortify sees
size_t as unsigned long.

INT05-A DONE Do not input integer
values using format-
ted input.

This is covered by FIO33-C.

INT06-A DONE Use strtol() to
convert a string token
to an integer.

Created a structural rule to flag
atoi, atol(), atoi(),
atoll(), and atoll() when
they're passed strings.

INT31-C high DONE Ensure that integer
conversions do not
result in lost or misin-
terpreted data.

Same as C rule. Able to create a
structural rule that looks for type
conversion without checking the
variable on the left hand side of
the assignment.

INT32-C high DONE Ensure that integer
operations do not
result in an overflow.

Same as C rule. Able to create a
structural rule that tests to see if
the affected operations are being
preformed and there is no if
statement.

INT33-C low DONE Ensure that division
and modulo opera-
tions do not result in
divide-by-zero errors.

Same as C rule. Created struc-
tural rule similar to INT32-C.

INT35-C medium DONE Do not truncate the
return value from a
character input func-
tion.

Created a structural rule to flag
on a function that returns an int to
a char variable.

FLP30-C DONE Take granularity into
account when com-
paring floating point
values.

Same as C rule.

FLP31-C low DONE Do not use floating
point variables as
loop counters.

Created a rule that flags condi-
tional loops that test a float that is
changed in the loop before break-
ing out of the loop.

FLP32-C low DONE Prevent domain errors
in math functions.

Same as C rule.

ARR00-A UNABLE Avoid using the
sizeof operator to
determine the size of
an array

sizeof is preprocessed out
before Fortify can analyze the
code.

ARR30-C high PARTIAL Guarantee that array
indices are within the
valid range.

Same as C rule.

 SOFTWARE ENGINEERING INSTITUTE | 37

ARR31-C high UNABLE Use consistent array
notation across all
source files.

Same as C rule.

DAN30-C high UNABLE Do not refer to an
object outside of its
lifetime.

Fortify can’t address scope is-
sues.

DAN31-C high FORTIFY Do not access deleted
objects.

Caught by
\[445B3F3C1AB46D8CC28EA53
5D6436803 : medium : Use After
Free : controlflow \] .

DAN32-C high DONE Do not delete this. Structural rule to catch function
delete when called with variable
named this~.

DAN33-C high UNABLE Do not use invalid
iterators.

This is the same as STL30-C.

DAN34-C high UNABLE Do not dereference
invalid pointers.

Could not get Fortify to flag on
new.

ERR31-C low UNABLE Destructors must be
exception-safe.

Could not get Fortify to flag on
throw.

RES30-C low UNABLE Never allocate more
than one resource in
a single statement.

The front-end will introduce tem-
porary variables and convert the
non-compliant one to compliant
one (the order is implementation-
defined). So the structural ana-
lyzer cannot match all syntactical
patterns in the original code.
There is a plan to solve the prob-
lems due to introduced temporary
variables, but it's not the highest
priority in the coming release.
The more general rule is "not
allow more than one side-effect in
the call parameters". This will
require more work. The principle
behind structural analysis and
structural rules is: structural rules
are supposed to match exact
syntactical patterns. So, it's not
possible to match all semantically
equivalent code patterns by one
structural rule in most cases. To
achieve the goal of one rule
matching all semantically equiva-
lent code patterns, we need in-
troduce more sophisticated
analysis will need to be intro-
duced, which may cost too much
overhead.

38 | CMU/SEI-2008-TR-014

RES31-C low FORTIFY Perform every re-
source allocation in its
own statement that
immediately assigns
the resource to an
owning object.

The front-end translates

 int i = xxxx;

to

int i;

i = xxxx;

The dataflow analyzer will mark
all used variables that are not
initialized in any execution path.

Fortify catches the NCCE with
\[9C8847DF979C3B2462D6E0C
7C30BACB2 : low : Uninitialized
Variable : controlflow \].

RES32-C high DONE Use new and delete
rather than raw mem-
ory allocation and
deallocation.

RES33-C low Fortify Object and array
delete must be prop-
erly paired with the
corresponding new.

Caught by
\[B0B21546D73D736EF3111D2D
80AAA168 : medium : Memory
Leak : controlflow \] .

RES34-C low UNABLE Encapsulate re-
sources that require
paired acquire and
release in objects.

Not sure how to do this; might be
possible with a control flow rule.

RES35-C low UNABLE Declare a copy con-
structor, a copy as-
signment operator,
and a destructor in a
class that manages
resources.

Fortify cannot detect violations of
this rule. Fortify can't do this.

RES36-C low UNABLE Ensure that copy
assignment operators
do not damage an
object that is copied
to itself.

Can't get Fortify to flag when a
member function is deleting a
member variable and then at-
tempting to use the contents of
that variable.

RES37-C low UNABLE Release resources
that require paired
acquire and release in
the object's destruc-
tor.

Fortify can't flag on the existence
(or lack) of an explicit destructor.

RES38-C low UNABLE Do not leak resources
when throwing excep-
tions.

Can't get Fortify to flag on throw
statement.

RES39-C low DONE Do not use
longjmp().

Created semantic rule to flag all
calls to longjmp().

 SOFTWARE ENGINEERING INSTITUTE | 39

OBJ30-C high UNABLE Do not use pointer
arithmetic polymor-
phically.

Unclear how to implement.

OBJ31-C high UNABLE Do not treat arrays
polymorphically.

See OBJ30-C.

OBJ32-C high UNABLE Ensure that single-
argument construc-
tors are marked "ex-
plicit".

Attempted a structural rule, but
could not tell the difference be-
tween a constructor and an ex-
plicit constructor. Cannot be-
cause we ignore conditional
expressions. If it's in assignment
statements, for example:

Widget * wt;

w1 = 2;

Then we can write a structural
rule and be written to match this
case. To match conditional ex-
pressions, a new label "Condi-
tionalExpression" must be de-
fined/implemented.

OBJ33-C low PARTIAL Do not slice polymor-
phic objects.

Won’t flag on a member of class
that extends the class of the
member to which it is being set
equal belongs.

One idea is to check the types of
the lhs and rhs of an assignment
statement. If the types are not
primitive, then the assignment
might cause object slicing. But
the SCA cannot distinguish the
assignments in initializations from
others in code, so it flags more
assignments than necessary.

OBJ34-C medium UNABLE Ensure the proper
destructor is called for
polymorphic objects.

Fortify can't tell the difference
between a derived class and a
non-derived class.

BSC30-C low DONE Use the c_str()
member to retrieve a
const pointer to a null-
terminated byte string.

Created semantic rule to catch all
uses of class basic_string
member function "data".

BSC31-C low DONE Do not modify the
null-terminated byte
string returned by the
c_str() member.

Created control flow rule to flag
when the string returned by
c_str() is altered with
str*cat() or str*cpp().

40 | CMU/SEI-2008-TR-014

 SOFTWARE ENGINEERING INSTITUTE | 41

BSC32-C DONE Do not use the pointer
value returned by
c_str() after any
subsequent call to a
non-const member
function.

Created a structural rule to flag
when a non-const member func-
tion of the basic_string class is
called after a pointer value is
returned by c_str. c_str().

BSC34-C high UNABLE Range check element
access.

The C rule ARR30-C appears
unable to test array access in
Fortify.

STR30-C low UNABLE Do not attempt to
modify string literals.

Same as C rule.

STR32-C high FORTIFY Allocated adequate
space when copying
bounded strings.

Example code caught by Fortify
rule
\[577ED976ECB85D475F175757
78932434 : high : Buffer Overflow
: dataflow \]. This may be a result
of the overall sample code.

STR35-C high UNABLE Limit input when read-
ing into a fixed length
array.

Attempted to write a control flow
rule. Could not flag on cin or
operator>> or >>.

STL30-C low UNABLE Use Valid iterators. Fortify doesn't seem to distin-
guish between different types of
unary operators.

This results from the front end
introducing temporary variables.
d.insert (pos++,
data[i]+41) is converted to t0
= pos++; d.insert(t0,
data[i]+41). We will be able
to match on t0 = pos++ in the
next release, but this is still an
internal feature.

STL31-C high UNABLE Use Valid iterator
ranges.

Iterators seem to be processed
out before Fortify gets to them.

STL32-C low UNABLE Use a Valid Ordering
Rule.

Fortify can't flag on this.

MSC31-C high UNABLE Obey the One Defini-
tion Rule.

Fortify can't flag on this.

42 | CMU/SEI-2008-TR-014

Appendix C C Rules Implemented in Compass Rose

The information included in this appendix is an artifact of the analysis process and has been in-
cluded to provide some of the details behind the analysis presented in the main body of this re-
port. This information is neither complete nor definitive and should be used with caution.

Rule Severity Progress Description Notes

DCL30-C high PARTIAL Declare objects with
appropriate storage
durations.

Rose automatically complains
about returning pointer to local
variable. Rose could also
catch other specific examples,
such as assigning an auto-
matic variable to a static
pointer.

EXP01-A high DONE Do not take the sizeof
a pointer to determine
the size of a type.

Rose flags template code: *
T1* x = mal-
loc(sizeof(T2) * y)

(T1*) malloc(sizeof(T2)
* y)
where T1 != T2

EXP08-A high NO Ensure pointer arith-
metic is used cor-
rectly.

EXP34-C high DONE Ensure a pointer is
valid before derefer-
encing it.

Rose now ensures that, after
receiving a malloc() result, a
pointer is next used in == or
!= operation (e.g., if (ptr
== NULL)...), or a cast-bool
operation (e.g., if
(ptr)...)

Rose doesn't handle cases
where ptr is assigned to some-
thing besides a simple variable
(e.g. struct member, array
member, dereference ptr, etc.

INT13-A high NO Do not assume that a
right-shift operation is
implemented as a
logical or an arithme-
tic shift.

Able to create a structural rule
to flag when a right shift opera-
tion is performed.

Could do the same in Rose,
but a >> op per se is not bad.
It’s not understood how to
check for assumptions about a
>> ops' results.

 SOFTWARE ENGINEERING INSTITUTE | 43

INT31-C high PARTIAL Ensure that integer
conversions do not
result in lost or misin-
terpreted data.

Able to create a structural rule
that looks for type conversion
without checking the variable
on the left hand side of the
assignment.

Rose already throws warnings
about sign conversion and
integer types. Don't entirely
trust it, because these warn-
ings appear whenever
limits.h is included.

INT32-C high NO Ensure that integer
operations do not
result in an overflow.

Able to create a structural rule
that tests to see if the affected
operations are being pre-
formed and there is no "if"
statement.

Probably doable in Rose, but
there will be many uncheck-
able instances where addition
cannot result in overflow. How
to limit check to “reasonable”
usage?

INT35-C high NO Upcast integers be-
fore comparing or
assigning to a larger
integer size.

AFAICT ROSE does not dis-
tinguish between explicit type-
casts and implicit typecasts
(e.g., promotions done by the
compiler). Still, it is possible
this rule can be enforced. By
limiting scope to equations of
the form <exp> <op> (<exp>
<op> <exp>), where the outer
operation is assignment or
comparison, and the inner
operator(s) isn't. Overflow
checking on the inner operator
should normally be mitigated
by judicious typecasting on the
inner expressions.

INT36-C high NO Do not shift a nega-
tive number of bits or
more bits than exist in
the operand.

We could ensure that any
variables used for a << or >>
operator previously appear in
comparison expressions. This
is one rule where dynamic
analysis will always fare better
than static.

ARR00-A high PARTIAL Be careful using the
sizeof operator to
determine the size of
an array.

Rose distinguishes between
complete array declarations
and incomplete array declara-
tions, but it does not distin-
guish between incomplete
array declarations and pointer
declarations. So, we check
both that a sizeof operand

44 | CMU/SEI-2008-TR-014

type is a pointer (or incomplete
array), and that a sizeof is
the divisor in a divides expres-
sion. We don't flag
sizeof(p) if p is an incom-
plete array or pointer that
doesn't live in a divided-by
expression It is unclear
whether there is a way to do
this.

ARR30-C high NO Guarantee that array
indices are within the
valid range.

The general problem of array
bounds checking lends itself to
dynamic analysis much better
than static analysis.

ARR31-C high NO Use consistent array
notation across all
source files.

ROSE might be able to do this,
assuming it distinguishes be-
tween pointer types and in-
complete array types. (ROSE's
behavior on this changed re-
cently.) Building this for one
file is easy, but we will need to
apply this to whole projects to
catch interfile inconsistencies.

ARR32-C high NO Ensure size argu-
ments for variable
length arrays are in a
valid range.

Created a structural rule to flag
when an array is dynamically
allocated and the value is not
properly checked. This will flag
on the example compliant
code as Fortify can't see out-
side of a single function's
scope.

We can ensure that a variable
used in an array ref was last
used in a comparison operator,
but that might not be very
comprehensive. Also we would
need to view multiple files, as
a variable could be modified in
one file, and then sent to an-
other file's function to declare
the array.

ARR33-C high NO Guarantee that copies
are made into storage
of sufficient size.

Rose catches the code in the
NCCE. Another case of ensur-
ing a variable has a reason-
able size. This is probably
better done dynamically. In this
case, we want to ensure the
size of memory allotted to arg1
of memcpy is large enough to
accommodate the size of data
(specified in arg3 of memcpy).
This might be doable statically,
but we need an infrastructure
to determine if one value is

 SOFTWARE ENGINEERING INSTITUTE | 45

greater than other at compile
time, which we currently lack.

ARR34-C high PARTIAL Ensure that array
types in expressions
are compatible.

Rose's default rules already
flag incompatible array copies.
So does gcc. Flagging vari-
able-length arrays is not done;
it probably could be, but not
easily.

STR00-A high N/A Use TR 24731 for
remediation of exist-
ing string manipula-
tion code.

STR01-A high N/A Use managed strings
for development of
new string manipula-
tion code.

STR31-C high PARTIAL Guarantee that stor-
age for strings has
sufficient space for
character data and
the null terminator.

Rose flags if the first arg in
strcpy is declared a fixed-
length array. Doesn’t currently
support strcpy_s. Unclear
how to identify the first exam-
ple (which does a manual
strcpy).

STR32-C high NO Guarantee that all
byte strings are null-
terminated.

Complex but doable. Search
for those functions that may
remove null-termination status
from a string (e.g., strcpy,
strncpy, realloc, memcpy,
others?). For any such func-
tion, make sure that it is either
inside an if statement based
on string length (it has
strlen(string)). Or make
sure that the next usage of our
string serves to add a null-
termination character. That
should catch all example code.

STR33-C high DONE Size wide character
strings correctly.

This rule is covered by EXP-
09-A, and by ROSE itself.

STR34-C medium NO Cast characters to
unsigned types before
converting to larger
integer sizes.

We can look for <int> =
<char> and diagnose if
<char> is not first typecast to
<unsigned char> .

STR35-C high NO Do not copy data from
an unbounded source
to a fixed-length ar-
ray.

Report on any usage of
gets(). Also catch any "%s"
in scanf(). No clue how to
catch the getc() example.

46 | CMU/SEI-2008-TR-014

MEM00-A high NO Allocate and free
memory in the same
module, at the same
level of abstraction.

Easy to create a rule to catch
fns that have just malloc or
just free. But, that will catch
many false positives. What we
need is a 'free-containing'
function associated with each
'malloc-containing' function.
(This is one area where C++
and RAII wins over C.)

MEM01-A high NO Set pointers to dy-
namically allocated
memory to NULL after
they are released.

Add rule to ROSE to ensure
that the usage of any pointer
after 'free' is on the left-hand-
side of an assignment operator
(e.g., it is being set to another
value, or NULL).

MEM02-A low N/A Do not cast the return
value from
malloc().

 This rule has been changed.

MEM04-A high

Do not make assump-
tions about the result
of allocating 0 bytes.

Would have to ensure that the
value in malloc arg, or re-
alloc arg is nonzero, which
would (probably) require some
variable value assertions (see
ARR33-C for a similar prob-
lem).

MEM07-A high NO Ensure that size ar-
guments to
calloc() do not
result in an integer
overflow.

Identifying a potential integer
overflow in the calloc argu-
ments is moderately difficult.
But, even more difficult would
be recognizing leading code
that would prevent such over-
flow.

MEM30-C high PARTIAL Do not access freed
memory.

Rose now flags any variable
used in any function (other
than an assignment) after
being freed. Does not catch
first example; that requires
more sophisticated analysis;
not sure it's worthwhile; dy-
namic analysis is necessary for
more comprehensive cover-
age.

MEM31-C high NO Free dynamically
allocated memory
exactly once.

The ROSE code for MEM30-C
may flag double frees, but it
should be a simple matter to
copy that rule to specifically
identify double frees.

MEM35-C high NO Allocate sufficient
memory for an object.

Would need to create some
tricky math rules to ensure that
a multiplication inside a mal-
loc arg does not result in

 SOFTWARE ENGINEERING INSTITUTE | 47

overflow. More difficult rules in
place to recognize preceding
code that prevents overflow.

FIO07-A low DONE Prefer fseek() to
rewind().

FIO12-A low DONE Prefer setvbuf() to
setbuf() .

FIO30-C high NO Exclude user input
from format strings.

It's probably too difficult to
ascertain the origin the con-
tents of a variable used as a
format string. Probably a suffi-
cient strategy is to flag on
usage of a variable format
string in printf (and other
format functions), unless that
variable's previous usage is to
be initialized to a constant
string. This hampers i18n, but
i18n is pretty vulnerable to
format string insecurities al-
ready.

FIO34-C high NO Use int to capture the
return value of char-
acter IO functions.

Going by the examples, the
proper rule here would be to
flag any implicit typecast of
EOF to an unsigned int. Or,
ignoring typecasts, any com-
parison of EOF to an unsigned
int. or char should be flagged.

FIO35-C high NO Use feof() and
ferror() to detect
end-of-file and file
errors.

Here, we should flag any com-
parison of EOF with the result
of getchar() (or a similar
function). Or with a variable
that was last assigned the
result of getchar() (or a
similar function). Very similar,
but not quite the same rule as
FIO34-C.

FIO36-C high NO Do not assume a
newline character is
read when using
fgets().

Don't know any way to know if
code is assuming the last
character of an fgets() invo-
cation is a newline.

FIO37-C high NO Don't assume charac-
ter data has been
read.

Like FIO36-C, a Rose rule
would need to know what im-
plicit assumptions the pro-
grammer made.

48 | CMU/SEI-2008-TR-014

 SOFTWARE ENGINEERING INSTITUTE | 49

FIO43-C high NO Do not copy data from
an unbounded source
to a fixed-length ar-
ray.

Looks like a duplicate of
STR35-C.

TMP00-A high NO Do not create tempo-
rary files in shared
directories.

Lots of easy cases to flag; we
can look for mktemp() and
related functions. We can also
look for const strings with
"/tmp" or "c:/TMP", or other
similar patterns. But what
would be a compliant code
example for this rule? It ap-
pears there is currently no right
way to do this.

TMP30-C high NO Temporary files must
be created with
unique and unpredict-
able file names.

The rule should be fairly easy
to enforce, but I'm not confi-
dent about the compliant solu-
tion. This rule also overlaps a
great deal with TMP00-A.

TMP32-C high DONE _Temporary files must
be opened with exclu-
sive access.

Rose now flags every instance
of tmpfile(). It also flags
any usage of tmpnam() after
fopen(), tmpnam_s() after
fopen_s(), and mktemp()
after open() (assuming they
use the same variable).

ENV01-A high NO Do not make assump-
tions about the size of
an environment vari-
able.

A solution here would be to
scan all usage for a string
(char[] or char*) that re-
ceives a result of getenv().
Do not allow this string to be
strcpy'd into another string,
unless the 2nd string was allo-
cated with a malloc that in-
volved strlen(string1).

ENV04-A high DONE Do not call system() if
you do not need a
command interpreter.

Rose flags all calls to sys-
tem(); can't tell if user needs
a command interpreter

MSC30-C low DONE Do not use the rand
function.

POS33-C low DONE Do not use vfork().

POS34-C high DONE Do not call putenv()
with an automatic
variable as the argu-
ment.

Rose flags putenv() with
array arg. (ptr arg is not
flagged.) Incorrectly flags static
arrays. Incorrectly misses
improper ptr usage (but
MEM00-a should catch those).

50 | CMU/SEI-2008-TR-014

Appendix D ROSE C++ Rules

The information included in this appendix is an artifact of the analysis process and has been in-
cluded to provide some of the details behind the analysis presented in the main body of this re-
port. This information is neither complete nor definitive and should be used with caution.

Rule Severity Progress Description Notes

DCL30-C low PARTIAL Do not use names reserved
for the implementation.

Currently disabled due to diffi-
culty of configuring rule for each
platform. Without configuration,
many false positives.

DCL32-C PARTIAL Avoid runtime static initiali-
zation of objects with exter-
nal linkage.

Currently disabled due to false
positives on extern declarations
that are not definitions.

EXP00-A

PARTIAL Do not use C-style casts. Currently disabled due to false
positives.

EXP02-A

DONE Do not overload the logical
AND and OR operators.

EXP03-A DONE Do not overload the & op-
erator.

EXP04-A DONE Do not overload the comma
operator.

EXP08-A

DONE A switch statement should
have a default clause
unless every enumeration
value is tested.

EXP09-A

DONE Treat relational and equality
operators as if they were
non-associative non-
associative.

EXP10-A PARTIAL Prefer the prefix forms of ++
and --.

Disabled, buggy.

EXP36-C medium PARTIAL Do not cast or delete point-
ers to incomplete classes.

Disabled, buggy.

EXP38-C DONE Avoid calling your own
virtual functions in construc-
tor and destructors.

EXP39-C PARTIAL Don't bitwise copy class
objects.

Disabled, buggy.

 SOFTWARE ENGINEERING INSTITUTE | 51

ERR01-A

DONE Prefer special-purpose
types for exceptions.

ERR02-A

DONE Throw anonymous tempo-
raries and catch by refer-
ence.

RES35-C low DONE Declare a copy constructor,
a copy assignment opera-
tor, and a destructor in a
class that manages re-
sources.

OBJ00-A DONE Declare data members
private.

OBJ01-A DONE Be careful with the defini-
tion of conversion opera-
tors.

OBJ02-A

DONE Do not hide inherited non-
virtual member functions.

OBJ03-A

DONE Prefer not to overload vir-
tual functions.

OBJ04-A

DONE Prefer not to give virtual
functions default argument
initializer.

OBJ32-C high DONE Ensure that single-
argument constructors are
marked "explicit"

52 | CMU/SEI-2008-TR-014

References/Bibliography

URLs are valid as of the publication date of this document.

[Almossawi 06] Almossawi, A.; Lim, K; & Sinha, T. “Analysis Tool

Evaluation: Coverity Prevent.” Pittsburgh, PA: Carnegie
Mellon University, 2006.

 http://www.cs.cmu.edu/~aldrich/courses/654/tools/cure-
coverity-06.pdf.

[CERT 07a] CERT. “CERT C Programming Language Secure Coding

Standard.” Pittsburgh, PA: Software Engineering Insti-
tute, CERT, 2008.
https://www.securecoding.cert.org/confluence/x/HQE.

[CERT 07b] CERT. “CERT C++ Programming Language Secure

Coding Standard.” Pittsburgh, PA: Software Engineering
Institute, CERT, 2008.
https://www.securecoding.cert.org/confluence/x/fQI.

[CERT 07c] CERT. “CERT Statistics.” Pittsburgh, PA: Software En-

gineering Institute, CERT, 2008.
 http://www.cert.org/stats/cert_stats.html.

[Chess 02] Chess, B. “Improving Computer Security using Ex-

tended Static Checking,” Proceedings of the 2002 IEEE
Symposium on Security and Privacy. Los Alamitos, CA :
IEEE CS Press, 2002.

[ISO/IEC 9899-1999] ISO/IEC. Programming Languages — C, Second Edition

(ISO/IEC 9899-1999). Geneva, Switzerland: Interna-
tional Organization for Standardization, 1999.

[ISO/IEC 14882-2003] ISO/IEC. Programming Languages — C++, Second

Edition (ISO/IEC 14882-2003). Geneva, Switzerland:
International Organization for Standardization, 2003.

 SOFTWARE ENGINEERING INSTITUTE | 53

https://www.securecoding.cert.org/confluence/x/HQE
https://www.securecoding.cert.org/confluence/x/fQI
http://www.cert.org/stats/cert_stats.html
http://www.cs.cmu.edu/~aldrich/courses/654/tools/cure-coverity-06.pdf
http://www.cs.cmu.edu/~aldrich/courses/654/tools/cure-coverity-06.pdf

54 | CMU/SEI-2008-TR-014

[ISO/IEC TR 24731-1-2007] ISO/IEC TR 24731. Extensions to the C Library —Part

I: Bounds-checking interfaces. Geneva, Switzerland: In-
ternational Organization for Standardization, April 2006.

[Larochelle 01] Larochelle, D. & Evans, D. “Statically Detecting Likely

Buffer Overflow Vulnerabilities,” Proceedings of the
10th Usenix Security Symposium (USENIX’01). Berke-
ley, CA: Usenix Association, 2001.

[Seacord 05] Seacord, R. Secure Coding in C and C++. New York,

NY: Addison-Wesley, 2005.

[US-CERT 08] US-CERT. “US-CERT Technical Cyber Security Alerts.”

Washington, DC, 2008.
http://www.us-cert.gov/cas/techalerts/index.html.

[Wallnau 01] Wallnau, K.; Hissam, S.; & Seacord, R. Building Sys-

tems from Commercial Components. New York, NY:
Addison-Wesley, 2001.

http://www.us-cert.gov/cas/techalerts/index.html

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. agency use only

(Leave Blank)
2. report date

June 2008
3. report type and dates covered

Final
4. title and subtitle

Evaluation of CERT Secure Coding Rules through Integration with Source Code Analysis Tools
5. funding numbers

FA8721-05-C-0003
6. author(s)

Stephen Dewhurst, Chad Dougherty, Yurie Ito, David Keaton, Dan Saks, Robert C. Seacord, David Svoboda, Chris Taschner, Kazuya
Togashi

7. performing organization name(s) and address(es)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. performing organization
report number
CMU/SEI-2008-TR-014

9. sponsoring/monitoring agency name(s) and address(es)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. sponsoring/monitoring agency
report number
ESC-TR-2008-014

11. supplementary notes

12a distribution/availability statement
Unclassified/Unlimited, DTIC, NTIS

12b distribution code

13. abstract (maximum 200 words)
This report describes a study conducted by the CERT Secure Coding Initiative and JPCERT to evaluate the efficacy of the CERT Secure
Coding Standards and source code analysis tools in improving the quality and security of commercial software projects. In addition to
assessing the ability of existing tools to detect violations of the standard, the ability to extend and improve the tools is surveyed. Finally,
the use of a selected tool to improve the quality of code in the real-world case of a Japanese software vendor’s product is described.

14. subject terms
secure coding rules, C++, C, source code analysis tool, CERT

15. number of pages
69

16. price code

17. security classification of report
Unclassified

18. security classification of this
page
Unclassified

19. security classification of
abstract
Unclassified

20. limitation of abstract
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Evaluation of CERT Secure Coding Rules through Integration with Source Code Analysis Tools
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Executive Summary
	Abstract
	1 Overview
	2 Evaluation and Rule Development
	3 Project Analysis
	4 Results
	5 Summary
	Appendix A Fortify C Rules
	Appendix B Fortify C++ Rules
	Appendix C C Rules Implemented in Compass Rose
	Appendix D ROSE C++ Rules
	References/Bibliography

